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We use basis spline collocation to solve the Schrödinger equation
on a lattice for axially symmetric systems, with and without spin.
The focus of the present work is on systems which have continuum
states, weakly bound states, or strong spin–orbit coupling, since
these are the most difficult to solve on the lattice. A brief overview of
the basis spline collocation method is included which concentrates
primarily on those aspects of the theory which are relevant to its
application in cylindrical coordinates. To demonstrate the method,
we solve several model problems selected from the fields of atomic
and nuclear physics. Q 1996 Academic Press, Inc.

I. INTRODUCTION

The increasing recognition of the utility of B-splines is
evidenced by the fact that spline theory is now included
in introductory texts [1] on numerical analysis. Even today,
however, most of the literature concerning splines empha-
sizes their use for approximation and interpolation [2–4].
Although the B-spline collocation method (BSCM) for
solving differential equations has been well described
[5, 6] and in use for some time [7], it has not enjoyed the
same level of general acceptance as other spline techniques
for scientific applications. This may be due, in part, to the
fact that the elegant structure of the theory is somewhat
obscured when the method is applied to noncartesian coor-
dinate systems.

The theory underlying BSCM in one dimension can be
expressed quite compactly using matrix–vector notation,
as pointed out in Ref. [8]. The inclusion of array processing
features in modern programming languages [9] allows this
conceptual simplicity to be reflected in the actual program-
ming of the BSCM. Further, this direct correlation with the
theory remains evident, even when the method is applied to
systems with two or more dimensions and noncartesian co-
ordinates.

Our interest in this area arises from the problem of
modeling short lived nuclei in which the Fermi levels are
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near the continuum. The development of an appropriate
theoretical treatment for this type of system has proven
to be difficult [10]. B-splines are well suited to this task
for a number of reasons. They have excellent interpolating
properties, nonlinear grids may be used to represent novel
phenomena, and continuum states can be treated in a real-
istic manner [11].

The methods which we are considering are not specific
to the field of nuclear physics. Indeed, the modeling of
heat conduction and fluid flow around cylindrical barriers
were among the first serious applications of the BSCM in
more than one dimension [12]. Several physical systems
of current interest, such as the behavior of atoms in strong
electromagnetic fields [13], have cylindrical symmetry and
will benefit from accurate numerical approaches.

In Section II we briefly review the rudiments of the
BSCM, emphasizing the matrix–vector notation. We also
outline a method for enumerating the B-splines and collo-
cation points which is appropriate for the axial grid. In
Section III we examine the kinetic energy spectrum of a
single particle in a cylindrical exposure. In addition to the
usual uniform knot spacing, we also investigate the use of
highly skewed knot distributions. In Section IV we imple-
ment the Morse potential problem on a cylindrical grid
with a highly nonlinear knot spacing to demonstrate the
effectiveness of BSCM for modeling weakly bound sys-
tems. Finally, the method is applied to a deformed oscilla-
tor with spin–orbit coupling in Section V.

II. BASIS SPLINE COLLOCATION

In this section we will review some of the features of
the BSCM and show how the method can be applied to
axially symmetric systems. Applications of the method in
Cartesian coordinates and in spherical coordinates, for sys-
tems with spherical symmetry, can be found in Ref. [8].
We preface the section by pointing out that the method



which we use to allocate the collocation grid is slightly
different from that which was presented in Ref. [8]. We
have found that the use of redundant boundary conditions,
in conjunction with nonlinear grids and high order interpo-
lation, may lead to poorly conditioned systems of equa-
tions. Therefore, the grid generation scheme which we
present here utilizes extra internal data points rather than
redundant boundary conditions.

A. Representation of Functions and Operators

A one dimensional physical region is partitioned into N
segments by a set of N 1 1 points hxij known as knots.
Unevenly spaced and multiply-defined knot locations are
allowed, but the sequence of elements must be arranged
in nondescending order. Thus the largest and smallest ele-
ments in the set (xmax and xmin) correspond to the bound-
aries of the physical region. A set of interpolating spline
functions with order M, hBM

i (x)j, is constructed and each
spline is indexed according to its location within the parti-
tioned region. The ith B-spline vanishes outside the inter-
val (xi, xi1M ) and is constructed from piecewise continuous
polynomials which are required to match at the knot loca-
tions within the interval. Each of the splines has continuous
derivatives through the (M 2 2)th order and a discontinu-
ous (M 2 1)th derivative. In actual calculations nonzero
B-splines and nonvanishing derivatives are generated by
recursion relations.

To guarantee that the splines generated on the knot
sequence obey the completeness relation,

O
i

BM
i (x) 5 1, (1)

we form an extended partition by adding M 2 1 extra
segments to each end of the grid. Restricting these extra
segments to zero length (multiply defined knots at the
endpoints) ensures that the analytical quadrature relation,

Exmax

xmin

BM
i (x) dx 5

xi1M 2 xi

M
, (2)

can be applied everywhere within the physical region, in-
cluding the boundaries. The resulting knot sequence is

knot sequence 5 (x1, x2, ..., xM , xM11, ..., xM1N21,

(3)
xM1N, ..., xN12M21).

  

5 xmin

  

5 xmax

The number of splines in the basis ( N ) is thus determined
by the number of segments in the physical region and the
spline order,
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N 5 N 1 M 2 1. (4)

Each spline is numbered sequentially as indicated in Fig. 1.
An arbitrary function f(x) can be approximated as an

expansion on the spline basis,

f(x) 5 ON

i51
BM

i (x)c i. (5)

Collocation points hxaj are placed at the location of each
spline maximum within the interior of the physical region.
This is accomplished by a simple binary search for the
zeros of the first derivatives. Although the method is rather
time consuming, it only needs to be performed once at the
beginning of each calculation. Further, this method offers
several advantages. First, it increases the magnitude of the
diagonal elements in the resulting linear equations. This
in turn gives a system which is better conditioned for subse-
quent numerical work. Second, it can be easily automated.
Finally, this scheme is valid for nonuniform knot spacings
and it permits the addition of extra collocation points
within the interior to accommodate splines of higher order.

The total number of collocation points is given by

n 5 N 2 2. (6)

The collocation formalism requires that the expansion co-
efficients be selected so that Eq. (5) is exactly satisfied at
the collocation points. It is convenient to define elements
of a vector fa ; f(xa ) and a matrix Bai ; BM

i (xa), and
express the relation in matrix–vector notation

(f)n 5 (B)n3N (c)N . (7)

To solve for the expansion coefficients we incorporate ho-
mogeneous boundary conditions,

O
p$0

Kp
dp

dx p f(x) U
boundary

(8)

5 O
p$0

Kp
dp

dx p ON

i51
BM

i (x)U
boundary

c i 5 0.

Two row vectors whose elements have the form

bi ; O
p$0

Kp F dp

dx p BM
i (x)G

boundary
(9)

are evaluated at the left (L) and right (R) ends of the grid,
and an augmented coefficient matrix is then constructed,

B̃ ;1
B

bL

bR2
N 3 N

. (10)
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This method of assigning elements in B̃ ensures that the
matrix is nonsingular [3], even with nonuniform grids, so
Eq. (7) can be inverted:

(c)N 5 (B̃21)N 3 N 1
f

—

0

0
2

N

. (11)

The inverse matrix is used to generate collocation matrix
operators which automatically satisfy the desired boundary
conditions. However, due to the presence of zeroes in the
column vector, only a portion of the inverse matrix is
actually required. We denote that portion by

(C̃)N 3n, (12)

and we note that it satisfies the relation

O
i

Bai C̃ ib 5 d b
a . (13)

Just as functions are represented as vectors in collocation
space, operators are represented as matrices. Consider the
action of an operator O on a function f(x):

O f(x) 5 O
i

[OBM
i (x)]ci. (14)

The collocation representation is constructed by evaluating
the operator’s action at the collocation points and substi-
tuting from Eq. (11) for the expansion coefficients. The
resulting transformation becomes

O f(x) R [O f ]a 5 O
b

Ob
a fb 5 (O)n3n(f)n . (15)

The matrix elements Ob
a are evaluated explicitly as

Ob
a 5 O

i
[OBM

i (xa)][C̃ ]ib. (16)

Thus, in one dimension the operation is reduced to matrix
multiplication, and the evaluation of the matrix elements
does not require a priori knowledge of the function.

The generalization of higher dimensions is straightfor-
ward. The function is represented as a simple array with the
appropriate number of dimensions, and partial differential
operators become square matrices which act only on one
dimension. Two-dimensional spatial arrays are especially
convenient since all operations can be implemented with
simple matrix multiplication and transposition.

B. Representation of the Schrödinger Equation for
Axially Symmetric Systems

For axially symmetric systems without spin, the angular
dependence may be separated so that eigenfunctions of
the Hamiltonian have the form

c(r, w, z) 5
eiew

Ï2f
f(r, z), (17)

where r and z are distances measured perpendicular and
parallel to the symmetry axis, w is the azimuthal angle, and
e represents the projection of the orbital angular momen-
tum onto the symmetry axis which is a constant of the
motion. The equation which must be solved on the grid is

2
"2

2m S2f
r2 1

1
r

f
r

2
e2

r2 f 1
2f
z 2D1 V(r, z) f 5 Ef. (18)

To implement this with BSCM we define the knots and
collocation points and construct partial derivative opera-
tors for each dimension using the method outlined in
Section II.A. The numbers of collocation points in the r
and z directions are denoted by nr and nz , respectively.

FIG. 1. Depicted is a set of fifth-order splines constructed on 10
uniform-length knot segments in the physical region. Extra zero-length
segments are appended to each end of the grid so that the splines form
a complete basis on the physical interval.



The function and the potential are represented as nr 3 nz

arrays, fab and Vab . Two nr 3 nr diagonal matrices are
constructed to represent the explicit r terms on the left
side of Eq. (18), (1/ra )diag and (e2/r2

a)diag . Partial derivative
operators are denoted by Dp

x , where the superscript speci-
fies the order of the derivative and the subscript indicates
the direction. It is convenient to separate the kinetic energy
into contributions from each dimension,

Rnr3nr
5 2

"2

2m
(D2

r 1 (1/ra)diag D1
r 2 (e2/r2

a)diag ) (19)

and

Znz3nz
5 2

"2

2m
(D2

z). (20)

Equation (18) becomes

O
a9

Raa9 fa9b 1 O
b9

Zbb9 fab9 1 Vab fab 5 Efab , (21)

or in matrix–vector notation,

Rf 1 fZT 1 V p f 5 E p f. (22)

In this notation juxtaposition indicates normal matrix mul-
tiplication, the superscript T is transposition, and the sym-
bol p represents element by element multiplication of con-
formable arrays. Scalars quantities, such as E, are assumed
to be conformable to any array.

It should be noted that the spatial resolution of the
collocation grid imposes some restrictions on the physical
interpretation of the numerical results. Several factors
must be considered. First, the largest magnitude of momen-
tum which can be faithfully represented on the grid is
fundamentally limited by the Nyquist criterion [14],

upumax #
"f
D

, (23)

where D is the largest separation between adjacent colloca-
tion points. With nonlinear grid spacings, some of the nu-
merically calculated energy eigenstates will correspond to
momenta above this limit. Since the r and z contributions
to the kinetic energy are independent, the limit applies to
both dimensions. For the examples we are considering, it
is computationally efficient to define the collocation grid
so that the limiting spatial resolutions in both directions
are roughly equal. Finally, the quality of the spline approxi-
mation generally depends on the interpolating order of the
basis and on the length of the knot segments [6]. We have
found empirically (with one-dimensional calculations of
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kinetic energy eigenvalues) that the relative error in the
calculated eigenvalues increases gradually with the energy.
To mitigate the effect of this type of error in actual calcula-
tions we may refine the grid spacing and check for conver-
gence.

C. Solution by Direct Diagonalization

One important advantage of the BSCM is the reduction
in computational effort which arises from the excellent
interpolating properties of the B-splines. A viable option
(for two-dimensional problems) is to construct an explicit
single matrix representation of the Hamiltonian and to
solve the eigenvalue problem by direct factorization. The
f array is mapped column by column into a large vector, and
the corresponding Hamiltonian matrix (H) is constructed.

fab R fk (24)

hRaa9 , Zbb9 , Vab j R Hkk9 . (25)

The specific mapping which will accomplish this is

k 5 (b 2 1)nr 1 a (26)

k9 5 (b9 2 1)nr 1 a9. (27)

The solution is obtained by applying a Schur factorization
[15] to decompose H.

It has been observed that the collocation representation
of an Hermitian operator is not necessarily an Hermitian
matrix [16, 17]. This is a special concern in our case due
to the nonlinear spacing of the data points and the presence
of the 1/ra term. In the present calculations eigenvalues
are sorted into ascending order and states above the Ny-
quist limit are discarded. The appearance of an imaginary
component among the remaining states is interpreted as
an error condition. Such errors are rare in actual calcula-
tions. For time independent problems such as those being
considered in the present work, the loss of symmetry in
the Hamiltonian represents a mere inconvenience. How-
ever, for the time-dependent Schrödinger equation this
problem can be quite serious. In some instances it is possi-
ble to restore the required symmetry by judicious choice
of grid points and boundary conditions, but in general the
BSCM as it is currently formulated is not well suited for
the time dependent problem. We will specifically address
the issue of Hermitian operators in future work.

III. KINETIC ENERGY SPECTRUM

The first test case which we consider is the kinetic energy
spectrum of a single particle on the two-dimensional grid.
For simplicity, Eq. (18) is expressed in natural units
(" 5 m 5 c 5 1),
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2
2f
r2 2

1
r

f
r

1
e2

r2 f 2
2f
z2 5 2E f, (28)

where E is the energy measured in units of mc2. This im-
poses a characteristic length scale which is equivalent to
measuring distance in units of the reduced Compton wave-
length (|c 5 "/mc). We define the grid so that the physical
region extends equal distances in both the plus and minus z
directions. The edges of the grid represent an impenetrable
cylindrical enclosure. Obviously, f must be required to
vanish at rmax and 6zmax . There is also a physical require-
ment that solution wavefunctions be differentiable every-
where inside of the enclosure which imposes restrictions
on the behavior of f(r, z) near the symmetry axis. Since
spin is not included, the boundary conditions will depend
only on the quantum number e,

f(r, z)ur50 5 0, e 5 odd, (29)

f
rU

r50

5 0, e 5 even. (30)

Separation of variables gives the kinetic energy eigenvalues

Ee,n,k 5
1
2 Sn 2

n,e

r2
max

1
k2f2

4z2
max
D , (31)

where nn,e is the nth zero of the Bessel function Je(x).

A. Linear Knot Distribution

For our present numerical calculations we fix the grid
boundaries at 10|c. Initially, the knots are uniformly
spaced at one unit intervals in both the r and z directions.
Splines of various orders are constructed on this grid and
the eigenvalues of the corresponding Hamiltonian opera-
tor are found by the method in Section II.C. Figure 2
shows that the higher order splines reproduce the general
structure of the analytical spectrum. Numerical results
corresponding to the 20 highest levels are also given in
Table I. No assumption of separability is made in the nu-
merical calculations so it is interesting to note that these
results agree to 15 significant digits with the results ob-
tained when the r and z equations are separated and solved
on one-dimensional grids in double precision.

B. Nonlinear Knot Distribution

Our next test involves the same physical region but with
a different gridding scheme. In order to simulate the behav-
ior of the kinetic energy operator in conjunction with an
interaction which is strongly concentrated near the origin,
the knot locations in both dimensions are distributed ac-
cording to the relation

uxi u 5 eLz2
i 2 1, (32)

where L 5 log(xmax) and the z’s are uniformly distributed
on the interval (0, 1). This gives a high density of colloca-
tion points near the origin but allows the grid to extend

FIG. 2. Kinetic energy eigenvalues for a particle within a cylindrical
enclosure, having angular momentum projection e 5 5. The B-splines
used for the calculation are constructed on a collocation grid with
rmax 5 u6zmax u 5 10|c , knots are distributed uniformly at 1 |c intervals.
Data corresponding to the 20 highest levels are given in Table I. M
represents the spline order.

FIG. 3. Kinetic energy eigenvalues for a particle within a cylindrical
enclosure, having angular momentum projection e 5 5. The B-splines
used for the calculation are constructed on a collocation grid with
rmax 5 u6zmax u 5 10|c , knots are distributed nonuniformly as described
in the text. M represents the spline order.



to very large distances. Despite the highly refined grid
near the origin, the overall limiting spatial resolution is
considerably lower than that obtained with uniform knot
distributions. Corresponding to this reduced Nyquist limit,
the energy cutoff level is also reduced.

All of the spline orders are able to reproduce the four
lowest energy levels reasonably well, but splines of order
7 and below yield poor results at higher energies. Fig-
ure 3 shows a comparison of the calculated eigenvalues
for the higher order splines. As the spline order is increased
two trends are observed in the data. First, the calculated
eigenvalues become more accurate. This can be attributed
to the improved interpolating power of the higher order
splines; the true solution is better approximated. Second,
higher energy levels are obtained. This is related to the
highly skewed knot distribution used in this example. Extra
collocation points which are added near the boundaries to
accommodate higher order splines, fall naturally into the
region which has the poorest spatial resolution. Conse-
quently, the Nyquist limit is substantially increased. This
is quite distinct from the behavior of a grid with linear
knot spacing, where the addition of a few extra collocation
points has little effect on the overall spatial resolution. It
is generally desirable to use high order interpolation with
nonlinear knot distributions. However, the matrices which
must be inverted to form the collocation space operators
tend to become ill-conditioned.

The energy levels obtained with calculations based on
this grid are sufficiently high to suggest that nonlinear
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distributions may offer a viable means for dealing with
loosely bound states. In the next section we will use a
variation of the knot distribution presented here for exactly
this purpose.

IV. MORSE POTENTIAL WITH
ROTATIONAL CORRECTION

The next case which we consider is to cast a radially
symmetric potential problem in cylindrical coordinates.
The Morse potential is often used to describe the vibrations
of two-atom molecules. Denoting the radial distance from
the origin as R, the potential can be expressed as

V(R) 5 V0(e22ax 2 2e2ax ), x 5
R 2 R0

R0
. (33)

There are analytical solutions for the Schrödinger equation
using this potential with no angular momentum, and it has
been used as a test case for several studies [8, 16, 18]. The
parameter set (R0 5 3, V0 5 25, a 5 6) duplicates the
conditions used in Ref. [8]. There are four bound states
corresponding to an orbital angular momentum of zero.
The parameters were selected so that the highest bound
state lies near the continuum. Due to the long exponential
decay length associated with the highest bound state, it is
difficult to perform accurate numerical calculations of the
corresponding energy level. Therefore, this potential will

TABLE I

Kinetic Energy Eigenvalues for a Particle in a Cylindrical Enclosure

Level Eigenvalue M 5 15 M 5 13 M 5 11 M 5 9 M 5 7 M 5 5

81 4.1097 4.1085 4.1123 4.1214 4.1887 4.2723 4.4050
82 4.1467 4.1456 4.1493 4.1584 4.2257 4.2733 4.4268
83 4.2084 4.2072 4.2110 4.2201 4.2342 4.2735 4.4275
84 4.2192 4.2195 4.2201 4.2228 4.2458 4.2830 4.4400
85 4.2328 4.2327 4.2329 4.2337 4.2504 4.3105 4.4645
86 4.2446 4.2446 4.2447 4.2454 4.2874 4.3722 4.5262
87 4.2948 4.2936 4.2973 4.3065 4.3738 4.4586 4.6127
88 4.3266 4.3370 4.3489 4.3702 4.4367 4.5191 4.6868
89 4.3818 4.3941 4.4003 4.4132 4.4494 4.5321 4.7239
90 4.3907 4.3992 4.4084 4.4175 4.4804 4.5526 4.7373
91 4.4058 4.4046 4.4335 4.4682 4.4848 4.5696 4.7375
92 4.4672 4.4671 4.4673 4.4825 4.5625 4.5951 4.7563
93 4.5415 4.5403 4.5441 4.5532 4.5846 4.6651 4.7927
94 4.5531 4.5531 4.5533 4.5546 4.6083 4.6966 4.8604
95 4.5770 4.5779 4.5799 4.5869 4.6205 4.7054 4.8604
96 4.7019 4.7007 4.7045 4.7136 4.7401 4.7818 4.9657
97 4.7262 4.7262 4.7264 4.7273 4.7809 4.8659 5.0225
98 4.7583 4.7757 4.8100 4.8414 4.9041 4.9504 5.0718
99 4.7978 4.8083 4.8201 4.8590 4.9080 5.0244 5.1039

100 4.8383 4.8858 4.8869 4.8900 4.9611 5.0512 5.1088

Note. The collocation grid extends to rmax 5 u6zmaxu 5 10|c , knots are distributed uniformly at 1 |c intervals in both dimension.
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provide a demonstration of the use of B-splines for weakly
bound systems.

Due to the fact that the axial calculations do not enforce
conservation of total angular momentum, but only the
z-component of the angular momentum, the energy level
structure of the solution is more complicated. Besides the
four L 5 0 bound states, nonzero angular momentum states
(up to L 5 18) will also have bound states, each one giving
rise to an extra e 5 0 state. To deal with this fuller spectrum
analytically we follow a method outlined in Ref. [19]. An
asymptotic expansion of the centrifugal term is constructed
about the potential minimum. This expansion has the same
form as the original Morse potential. The effective poten-
tial (that is the original potential plus the centrifugal term)
is approximated by a rotationally corrected Morse potential
as illustrated in Fig. 4. The resulting energy levels are
given by

E 5
1

2R2
0
F22R2

0V0 1 2a Ï2R2
0V0 Sn 1

1
2D

2 a2 Sn 1
1
2D2

1 l(l 1 1) 2
9(a 2 1)2

4a4c2 l 2(l 1 1)2 (34)

2
3(a 2 1)

ac Sn 1
1
2D l(l 1 1)G .

The first three terms correspond exactly to the analytical
solution used in Ref. [8]. The fourth term is the rotational
energy of a particle moving at a fixed radius of R0. The

fifth term accounts for the fact that the expectation value
for the radius will vary with angular momentum. The last
term represents the coupling between the rotational and
vibrational modes of the system.

Expressing the potential in cylindrical coordinates gives
the actual expression which must be solved on the grid:

2
1
2 S2f

r2 1
1
r

f
r

2
e2

r2 f 1
2f
z2D

1 V0 Fexp S22a
Ïr2 1 z2 2 R0

R0
D (35)

2 2 exp S2 a
Ïr2 1 z2 2 R0

R0
DG5 E f.

Since we are concerned primarily with comparing solutions
for the L 5 0 states, we can restrict the numerical calcula-
tion to the positive quarter-plane and solve for even parity
states. This is accomplished by setting a boundary condi-
tion in the equatorial plane,

f
zU

z50

5 0. (36)

The boundary conditions along all remaining boundaries
are fixed in exactly the same manner as in the previous ex-
amples.

The collocation grid must have a relatively high density
of points near the origin in order to accurately represent
the potential near its minimum. At the same time, the grid
must extend sufficiently far from the origin to cover the
slow exponential decay of the highest bound state. These
conflicting requirements are, in fact, the main difficulty
with lattice calculations for weakly bound states. The re-
quirements can be satisfied by constructing both the r and
z grids in the following manner: the interval (0, 2) is as-
signed as a single knot segment; the remaining knots are
assigned according to the mapping

xi 5 xmin 1 eLz 2
i 2 1, (37)

where L 5 log(xmax 2 xmin) and the z’s are uniformly
distributed on the interval (0, 1). B-splines of order 17
were generated on this knot sequence and collocation
points were allocated as described earlier.

The discretized Hamiltonian was solved by the method
described in Section II.C and Fig. 5 provides a complete
summary. The smooth curve represents the potential as a
function of distance from the origin. Actual collocation
points are indicated by closed circles. The level structure
on the left was evaluated with Eq. (34); the four extended
lines correspond to the four L 5 0 bound states. The level

FIG. 4. Depicted are the representations of the ‘‘effective poten-
tial’’ (Morse potential plus centrifugal term) and the corresponding
‘‘rotationally corrected’’ potentials. The correction is accomplished by
constructing an asymptotic expansion of the centrifugal term in the Hamil-
tonian about the location of the potential minimum. Since the approxima-
tion introduces a systematic upward shift to the energy for non-zero
angular momenta, only L 5 0 states are used for quantitative comparison.



structure on the right was calculated with the BSCM. Both
spectra show the same number of bound states with similar
spacings between corresponding levels.

Table II shows the fractional error (uEExact 2 ENumerical u/
uEExact u) in the eigenvalues for the four L 5 0 states. Also
included are the results of a one dimensional calculation
on a nonlinear grid using seventh-order splines from Ref.
[8]. This should not be considered as a direct comparison
since the grids on which these results are based are funda-
mentally different. Rather, the intention is to demonstrate
that calculations on the cylindrical grid are in some sense
competitive. The superior performance of the cylindrical
calculation for the highest level can be attributed to the
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larger spatial distance covered and to the use of higher
spline orders, which in turn is possible because of the
slightly different scheme for allocating the collocation
points. The lower accuracy of the low lying eigenvalues
can also be easily understood; near the origin the radial
calculation more fully exploits the natural symmetry of
the Hamiltonian.

Having made the case that nonlinear grids can be used
to improve the effectiveness of BSCM for modeling weakly
bound states, some caveats are in order; we do not intend
to imply that such measures are always appropriate. In-
deed, the numerical results in Section III and the subse-
quent discussion indicate that the contribution from the
kinetic energy operator to high lying levels may be de-
graded by the introduction of nonlinear grids. Section III
and the present section, when considered together, provide
a pattern which can be used to assess whether a particular
nonlinear grid is suitable. The nonlinear grid is only intro-
duced into the potential problem after investigating the
deleterious effects of comparable grid schemes on the raw
kinetic energy operator. Model problems in these sections
were specifically cast in a form with matching energy scales
and characteristic lengths in order to facilitate this type of
comparison. It should also be understood that the knot
distribution defined in Eq. (37) is tailored to the Morse
potential; other physical situations may require completely
different grid schemes. In calculations with more realistic
potentials (and also for self-consistent calculations where
the effective potential evolves iteratively) we have found
that it is more practical to compose a grid in several individ-
ual sections with each section having its own uniform spac-
ing rather than trying to define an analytical distribution
function.

V. DEFORMED OSCILLATOR

The final model system which we will treat is the de-
formed oscillator with spin–orbit coupling. In addition to
testing the implementation of collocation space operators
and boundary conditions, this also demonstrates the han-
dling of spin degrees of freedom.

Under the assumption of axial symmetry we expect the
z-projection of the total angular momentum to be a con-
served quantity so that eigenstates of the Hamiltonian have
the form

c 5 cV 5
1

Ï2f
Sei(V21/2)wU(r, z)

ei(V11/2)wL(r, z)
D ,

(38)

V 5 6
1
2

, 6
3
2

, 6
5
2

, ...,

where V represents the Jz quantum number, and the spatial
functions U and L are assumed to be real.

FIG. 5. Summary of results for the Morse potential problem. The
smooth curve represents the potential as a function of distance from the
origin, closed circles are actual data points. The figure depicts only the
portion of the data points near the origin, the grid actually extended to
more than 60|c with the point density becoming smaller at larger dis-
tances. Energy levels on the left were determined by the analytical formula
given in the text (the four elongated lines correspond to L 5 0 states,
see Table II; those on the right were found with BSCM.

TABLE II

Fractional Error for L 5 0 Bound States of
the Morse Potential

Level Eigenvalue Axial grid Radial grid

1 218.428932 4.4E-05 5.4E-08
2 28.2867966 1.4E-04 1.6E-05
3 22.1446609 1.8E-04 1.3E-04
4 20.0025253 8.9E-03 3.9E-1

Note. Axial calculations were carried on a 2-d grid representing the
positive quarter-plane in r and z. The grid extends to 60 |c in each
direction using a nonlinear knot distribution described in the text. Radial
calculations are taken from Ref. [8].
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In this example we follow the convention of using MeV
for the unit of energy and fm for the unit of distance. An
approximate value for the nucleon mass (mc2 5 939 MeV)
is used for all calculations. The Hamiltonian for the de-
formed oscillator becomes

Ĥ 5 2
"2

2m S 2

r2 1
1
r



r
1

1
r2

2

w2 1
2

z2D
(39)

2 V0 1
m
2

(g2
r r2 1 g2

zz2) 2 2"g0kl · s.

The oscillator frequencies are related to the frequency (g0)
of a spherical oscillator, the mass number (A) of the system,
and a small deformation parameter (d), by the relations

"g0 5
41

A1/3 (MeV) (40)

g2
r 5 g2

0 (1 1 Sdd) (41)

g2
z 5 g2

0 (1 2 Fdd). (42)

This particular parameterization preserves the volume of
the nucleus up to a small correction term in d 2.

Casting all expressions explicitly in cylindrical coordi-
nates yields a set of coupled equations for U and L:

(T̂ 1 V̂ 1 ĤSO)SU(r, z)

L(r, z)
D5 ESU(r, z)

L(r, z)
D (43)

The potential depth and the number of nucleons were
fixed at V0 5 50 MeV and A 5 190 for all calculations.
The collocation grid was defined on a region extending
from 0 fm to 15 fm in the r direction, and from 215 fm
to 115 fm in the z-direction. Knots were distributed uni-
formly across the physical region in both directions at
1 fm intervals. The use of a nonlinear knot distribution in
this example was not deemed appropriate since oscillator
states, no matter how high the energy, are always tightly
bound. B-spline bases of varying orders were constructed
on the grid and eigenvalues of the Hamiltonian in Eq. (43)
were obtained by a slight generalization of the method
described in Section II.C. Boundary conditions were deter-
mined according to the same principles which were applied
in the previous examples, but separate conditions are re-
quired for the upper and lower components of the spinor.
These are summarized in Table III.

Validation of the program is carried out in several stages.
For systems with no spin–orbit term (k 5 0), Eqs. (43)
become uncoupled and can be solved by separation of
variables. The analytical eigenvalues are given by the
expression

E 5 "gz(nz 1 As) 1 "gr(2nr 1 ueu 1 1) 2 V0 , (47)

where the n ’s represent the number of vibrational quanta
in the r and z directions and e 5 V 6 As. Thus, the first
stage is to set k 5 0 and compare the results of numerical
calculations with Eq. (47) for fixed deformation and angu-
lar momentum projection. Table IV shows a comparison

T̂ 5 2
"2

2m 1 2

r2 1
1
r



r
2

(V 2 1/2)2

r2 1
2

z2 0

0
2

r2 1
1
r



r
2

(V 1 1/2)2

r2 1
2

z22 (44)

V̂ 5
mg2

0

2 1r2 (1 1 Sdd) 1 z2(1 2 Fdd) 2
2V0

mg2
0

0

0 r2(1 1 Sdd) 1 z2(1 2 Fdd) 2
2V0

mg2
0
2 (45)

ĤSO 5 2"g0k 1 (V 2 As) 2(V 1 As)
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z
2(V 1 As) 2 . (46)



conducted at angular momentum projection V 5 Ds and
deformation d 5 0.2. The error values listed are representa-
tive of other calculations carried out at physically reason-
able values for V and d. The quality of the spline calcula-
tions is improved with increasing spline order. However,
with the uniform knot distribution, little improvement is
achieved by using splines of order higher than nine unless
the knot distribution is also refined.

The second stage of validation is to check the spin–orbit
splittings. In spherical coordinates the potential term in
Eq. (39) can be expressed in terms of the spherical har-
monic,

m
2

(g2
r r2 1 g2

zz2) 5
m
2

g2
0(r2 1 z2)

(48)

FS1 2
2
3

dD1
4
3 !4f

5
dY20(u, w)G .

When there is no deformation, total angular momentum
becomes a conserved quantity and the spin–orbit term can
be diagonalized:

l · s 5 As( j( j 1 1) 2 l(l 1 1) 2 Df)
(49)5 HAs( j 2 As) for l 5 j 2 As,

2As( j 1 Ds) for l 5 j 1 As.

It is a straightforward process to identify which total angu-
lar momentum states can contribute to a given V state and
to verify that each numerically calculated V eigenvalue
corresponds to an appropriately shifted J2 eigenvalue. The
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results shown in Table V were generated by selecting a
physically reasonable value (k 5 0.05) for the spin–orbit
coupling for a spherically symmetric (d 5 0.0) nucleus.
Again, the results are consistent with the observation that
the accuracy of the spine calculations improves with in-
creasing spline order.

Except for the exclusion of a small orbital correction
term in the potential, our deformed oscillator is identical
to a standard model for the deformed nucleus known as
the Nilsson model [20]. A full treatment of the analytical
solution can be found in most texts on nuclear physics.
The intent of the model is to analyze the dependence of
single particle energy levels on deformation. In that spirit,
our last check is to perform such an analysis numerically.
Figure 6 depicts the results of single particle energy level
calculations carried out on the collocation grid for a variety
of V values and over a continuous range of deformation.
For these calculations we used ninth-order splines and
set the spin–orbit coupling at k 5 0.05. Comparison with
standard ‘‘Nilsson plots’’ given in Refs. [21–23] indicate
that we are in qualitative agreement.

VI. SUMMARY AND DISCUSSION

We have demonstrated that BSCM can be applied to
eigenvalue problems with axial symmetry. The method
allows for a simple treatment of boundary conditions along
the symmetry axis. Further, we have shown that numerical
calculations can be reduced to a quarter-plane by incorpo-
rating parity and setting boundary conditions in the equato-
rial plane. Finally, we have included strong spin–orbit
coupling in the calculations. With the basic elements in
place, the method can be applied to physically realistic
models. In fact, using a deformed Woods–Saxon potential,
we have been able to replicate many of the results reported
in Ref. [24].

The successful use of highly nonlinear grid point distrib-
tutions demonstrates that BSCM can be used to model
weakly bound quantum states. It further suggests that low
lying positive energy states may provide a reasonable ap-
proximation for the continuum. This would allow treat-
ment of resonance phenomena.

TABLE III

Boundary Conditions along the z-Axis (r 5 0)

Upper component Lower component
Condition boundary condition boundary condition

V 2 As 5 even r U ur50 5 0 L ur50 5 0
V 2 As 5 odd U ur50 5 0 r L ur50 5 0

TABLE IV

Fractional Error versus Spline Order M for V 5 Ds, d 5 0.2, k 5 0

Level Eigenvalue M 5 3 M 5 5 M 5 7 M 5 9

1 231.275217 0.906E-03 0.173E-03 0.415E-05 0.610E-07
2 225.005047 0.111E-02 0.961E-04 0.992E-06 0.381E-06
3 223.480371 0.401E-02 0.457E-04 0.243E-04 0.406E-06
4 218.734873 0.729E-02 0.357E-03 0.212E-04 0.143E-05
5 217.210197 0.874E-02 0.113E-03 0.273E-04 0.332E-06
6 215.685524 0.789E-02 0.126E-03 0.630E-04 0.936E-05
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An important advantage of BSCM arises directly from
the use of spline functions. The interpolating properties
of splines lead naturally to a compact representation for
both wavefunctions and operators. This in turn leads to a
reduction in the numerical effort regardless of the particu-
lar method which is employed. Many of the comparisons
which are presented in this paper are intended to illustrate
that small increases in the interpolating order often lead
to large gains in accuracy. This is significant in that the
penalty which is incurred on the numerical effort as a result
of increasing the spline order is generally much less than
the penalty which would be incurred as a result of the grid
refinement needed to obtain a similar increase in accuracy.
As mentioned in Section II.B, in actual calculations one
should check for convergence with respect to grid spacing
as well as spline order. For large scale problems in which
direct diagonalization is not practical, iterative techniques
like damped gradient iteration may be used [25]. In such
cases the ability to divide the Hamiltonian into several

functional parts as shown in Eq. (22) represents a large
reduction in the storage requirements for the operators.
Although we have not done so, in principle it should be
possible to further enhance the efficiency of iterative meth-
ods by exploiting the banded structure of the coefficient
and operators matrices which appear in Section II.A.

In reviewing the elements of the theory of the BSCM,
we have emphasized the fact that most of the operations
can be cast in matrix–vector form. The array processing
features of FORTRAN 90 are particularly well suited for
these operations. Several modules have been developed
in conjunction with the present work, and they are avail-
able from the authors. In particular the module SPLINE90
is a compact collection of routines which can be used to
generate B-splines for collocation or other applications.
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